	INDIAN SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE 2024 – 25 SUBJECT: CHEMISTRY		Date: 30-04-2024
Worksheet No: 1 WITH ANSWERS	CHAPTER: 1; SOME BASIC CONCEPTS OF CHEMISTRY		Note: A4 FILE FORMAT
NAME OF THE ST	UDENT	CLASS & SEC:	ROLL NO.

Objective Type Questions

1 mol O₂ will be equal to:
 (a) 4 g equivalent oxygen
 (c) 32 g equivalent oxygen

- (b) 2 g equivalent oxygen
- (d) 8 g equivalent oxygen
- 2. What will be the molality of solution containing 18.25 grams of HCl in 500ml of water (a) 0.1 m (b) 1 M (c) 1m (d) 0.5 m
- 3. The number of atoms present in 16 g of oxygen is (a) $6.02 \times 10^{11.5}$ (b) 3.01×10^{23}
 - (a) $6.02 \times 10^{-11.5}$ (b) $5.01 \times 10^{-11.5}$ (c) $3.01 \times 10^{-11.5}$ (d) 6.02×10^{-23}
- 4. The empirical formula and Molar mass of a compound are CH₂O and 180 grams respectively What will be the molecular formula of the compound?

(a) $C_9 H_{18}O_9$ (b) CH_2O (c) $C_6H_{12}O_6$ (d) $C_2H_4O_2$

5. Which of the following contains the maximum number of oxygen atoms?

(a) 1 g of O	(b) 1 g of O ₂
(c) 1 g of O ₃	(d) all have the same number of atoms

6. Which of the following compounds has the same empirical formula as that of glucose?
(a CH₃CHO
(b) CH₃COOH
(c) CH₃OH
(d) C₂H₆

7. On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254:80.The formula of the compound is:(At mass I = 127, O = 16)(a) IO(b) I_2O (c) I_5O_2 (d) I_2O_5

8. 10 mol of Zn mixed with 10 mol of HCl. Calculate the number of moles of H₂ produced
(a) 5 mol (b) 10 mol (c) 20 mol (d) 2.5 mol

Questions 9- 10 are Assertion Reason type questions

- a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
- c. If Assertion is correct and Reason is wrong.
- d. If Assertion is wrong and Reason is correct.
- 9. Assertion (A): Number of moles of H₂ in 0.224 L of hydrogen is 0.01 mole. Reason(R): 22.4 L of H₂ at STP contains 6.023×10^{23} moles.
- Assertion (A): The empirical mass of ethene is half of its molecular mass.
 Reason (R) The empirical formula represents the simplest whole number ratio of various atoms present in a compound.

2 Marks questions

- 11. Calculate the number of molecules and number of atoms present in 1.2 g of ozone.
- 12. Prove that sum of all mole fractions of a solution is unity
- 13. Write empirical formula of the following: CO, Na₂CO₃, KCl, H₃PO₄, Fe₂O₃
- 14. An organic compound contains 144g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol⁻¹, calculate:
 - I. Empirical formula
 - II. Molecular formula
- 15. How many moles of ethane are required to produce 66 g CO₂ after combustion?
- 16. A solution is prepared by dissolving 150g of NaCl in 900 g of water. Calculate the mole fraction of each component.
- 17. How many moles of N₂ are required to produce 85g of NH₃? Calculate its mass.

3 Marks Questions

- 18. What do you mean by limiting reagent?400 g of N₂ and 150 g of H₂ are mixed together to form NH₃. Identify the limiting reagent and calculate the amount of NH₃ produced.
- 19. Explain the following:
 - a. Mole fraction
 - b. Molarity
 - c. Molality
- 20. The density of the 2M solution of NaCl is 1.25 g ml⁻¹. Calculate molality of the solution.

21. Zinc and hydrochloric acid react according to the reaction:

 $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

If 0.30 mol Zn are added to hydrochloric acid containing 0.52 mol of HCl, how many moles of H_2 are produced?

22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol. What is its molecular formula?

Case study-based Questions (4 marks)

23.The identity of a substance is defined not only by the types of atoms or ions it contains but by the quantity of each type of atom or ion. The experimental approach required the introduction of a new unit for the number of substances, the mole, which remains indispensable in modern chemical science. A mole is an amount unit similar to familiar units like pair, dozen, gross, etc. It provides a specific measure of the number of atoms or molecules in a bulk sample of matter. A mole is defined as the amount of substance containing the same number of discrete entities (atoms, molecules, ions, etc.) as the number of atoms in a sample of pure 12C weighing exactly 12g.. The number of entities composing a mole has been experimentally determined to be 6.02214179×1023 . The molar mass of an element (or compound) is the mass in grams of 1 mole of that substance, a property expressed in units of grams per mole (g/mol).

- (a) The mass of oxygen gas which occupies 5.6 liters at STP could be (1 mol of gas occupier 22.4 litres of gas at STP)
- (b) What is the mass of one molecule of yellow phosphorus? (Atomic mass of phosphorus = 31 u)
- (c) How many Oxygen atoms are present in 6.025 g of Barium phosphate Ba₃(PO₄)₂ (atomic mass of Ba = 137.5 U, P=31 U, O= 16u)

5 Marks Questions

24. Calcium carbonate reacts with aqueous HCl to produce CaCl₂ and CO₂. According to the reaction given Below

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O$

What mass of calcium chloride will be formed when 0.19 mole of HCl reacts with 1000 grams of Calcium carbonate Name the limiting reagent.

25. Calculate the molality and molarity of 93 % H₂SO₄(mass/volume). The density of the solution is 1.84 gram per ml

Answers

1.	c
2.	c
3.	d
4.	C
5.	a
6.	b
7.	d
8.	a
9.	c
10	a
11	number of molecules of O ₃ (N) = $1.2/48 \times 6.022 \times 10^{23} = 0.15 \times 10^{23}$
	1 molecule of O_3 contain = 3 atoms
	No Of atoms = $.45 \times 10^{23}$

12	Mole fraction of A in solution $(x_A) = rac{n_A}{n_A + n_B}$				
	Mole fraction of B in solution $(xa) = \frac{n_B}{n_A + n_B}$				
	So,				
	$x_A + x_B = \frac{n_A + n_B}{n_B + n_B}$	$\frac{n_B}{n_B} = 1$			
	$n_A +$	n_B			
13	CO – CO Na2CO3 - Na2CO3				
	KCl – KCl				
	$H_3PO_4 - H_3PO_4$ $Fe_2O_3 - Fe_2O_3$				
14	Flement	Mass	Moles	Ratio	Simplest ratio
	C	144	12	1	
	Н	17	12	1	
	Empirical formula	a = CH	12	1	1
	Empirical formula	a mass $= 13$			
	n = 78/13 = 6 Molecular formul	$a = C_6 H_6$			
15	$C_2H_6 + 7/2 O_2 \rightarrow 2CO$	$2 + 3H_2O$			
	No: of moles of CO ₂	= 66/44 = 1.5 mo	oles		
	C ₂ H	I ₆ Co	O_2		
	As per equation As per question	1 mol ?	2 mol 1.5 mol		
	Ans: 0.75 moles of	fethane			
16	$n_{\text{NaCl}} = 150 / 58.5 = 2.$	56			
	n _{H2O} = 900 / 18 =	= 50			
	$\chi_{NaCl} = 2.56 / 2.56 + 50 = 0.0487$				
	$\chi_{\rm H2O} = 50 / 52.56 = 0.951$				
17	$N_2 + 3H_2 \rightarrow 2NH_3$				
	No: of moles of N	$H_3 = 85/17 = 5 n$	noles		
	N_2	NH ₃			
	As per eqn, 1 mol As per qn, ?	2 mol 5 moles			
	Therefore no: of moles	s of $N_2 = 2.5$ mol	es		

18	. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is,		
	mererore, caned the mining reagent.		
	$N_2 + 3H_2 \rightarrow 2NH_3$		
	No: of moles of $N_2 = 400/28 = 14.28$ mol		
	No: of moles of $H_2 = 150 / 2 = 75$ mol		
	$\begin{array}{ccc} N_2 & H_2 \\ As per eqn. & 1 & 3 \\ As per qn, & 14.28 & ? \end{array}$		
	No: of moles of H ₂ required for 14.28 moles of N ₂ = 42.84 mol Therefore, H ₂ is excess reagent i.e. N ₂ is limiting reagent.		
	N ₂ NH ₃		
	As per eqn. 1 2 As per question 14.28 ?		
	Therefore no: of moles of $NH_3 = 28.56$ mol Mass of $NH_3 = 28.56 \times 17 = 485.52$ g		
10	a Mole fraction. It is the ratio of number of moles of a particular component to the total number of moles		
19	of the solution.		
	Mole fraction of A		
	$=\frac{\text{No. of moles of A}}{\text{No. of moles of solutions}}$		
	$n_{\rm A}$		
	$=\frac{1}{n_{\rm A}+n_{\rm B}}$		
	Mole fraction of B		
	= No. of moles of B		
	No. of moles of solutions $n_{\rm p}$		
	$=\frac{n_{\rm B}}{n_{\rm A}+n_{\rm B}}$		
	b. Molarity: It is defined as the number of moles of the solute in 1 litre of the solution.		
	Molarity (M) = $\frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$		
	c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent.		
	Molality (m) = $\frac{MOLOF MOLES OF SOLUTE}{Mass of solvent in kg}$		
20	. Molarity = 2M		
	Assume volume of solution = $1 L$ Therefore No of moles of NaCl = $2 mol$		
	Mass of NaCl = $2 \times 58.5 = 117$ g		
	Mass of 1 L of solution = $1.25 \text{ gm}^{-1} \times 1000 \text{g} = 1250 \text{ g}.$		

	(Since density = 1.25 gml ⁻¹ and density = mass / volume)		
	Mass of water $-1250 \text{ g} \cdot 117 \text{ g}$		
	-1133 g		
	Molality – No: of moles of solute/Mass of solvent(kg)		
	-2/1 122		
	-2/1.133 - 1.765 moll/s ⁻¹		
21	-1.703 IIIOINg		
21	HCI is inmung reagent; H_2 formed = 0.56 mol		
22	Malas of $C = 40.49/12 = 4.12$ mal		
LL	Moles of $C = 49.46/12 = 4.12$ mol		
	Moles of $H = 5.19/1 = 5.19 \text{ mol}$		
	Moles of $O = 16.48/16 = 1.03 \text{ mol}$		
	Moles of N = $28.85/14 = 2.06$ mol		
	$Empirical formula = C_4H_5N_2O$		
	Molecular formula = $C_8H_{10}N_4O_2$		
23	(a) 5.6 litres of O_2 gas = 5.6/22.4 moles of $O_2 = \frac{1}{4}$ mole = 8g of O_2		
	(b) Mass in grams = $31/6.022 \times 10^{23} = 5.14 \times 10^{-23} g$		
	(c) No of moles of $Ba_3(PO_4)_2 = 6.025/602.5 = 10^{-2}$		
	1 molecule of $Ba_3(PO_4)_2$ contains 8 O atoms		
	Hence No of Oxygen atoms in 10 ⁻² moles = 10 ⁻² x 6.022 10-23 x 8 = 4.82 x 10 ²² atoms		
24	HCl is the limiting reagent		
	10.54 grams of calcium chloride is formed		
25	Molarity = 9.49 M, molality = 10.43 m		

PREPARED BY	CHECKED BY
Ms. JENESHA JOSEPH	HoD SCIENCE