	INDIAN SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE 2024-25 SUBJECT: CHEMISTRY		Date: 30-04-2024
Worksheet No: 1 WITH ANSWERS	CHAPTER: 1; SOME BASIC CONCEPTS OF CHEMISTRY		Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS \& SEC:	ROLL NO.

Objective Type Questions

1. $1 \mathrm{~mol} \mathrm{O}_{2}$ will be equal to:
(a) 4 g equivalent oxygen
(b) 2 g equivalent oxygen
(c) 32 g equivalent oxygen
(d) 8 g equivalent oxygen
2. What will be the molality of solution containing 18.25 grams of HCl in 500 ml of water
(a) 0.1 m
m (b) 1 M
(c) 1 m (d) 0.5 m
3. The number of atoms present in 16 g of oxygen is
(a) $6.02 \times 10^{11.5}$
(b) 3.01×10^{23}
(c) $3.01 \times 10^{11.5}$
(d) 6.02×10^{23}
4. The empirical formula and Molar mass of a compound are $\mathrm{CH}_{2} \mathrm{O}$ and 180 grams respectively What will be the molecular formula of the compound?
(a) $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}(\mathrm{~b})$
(b) $\mathrm{CH}_{2} \mathrm{O}$
(c) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
5. Which of the following contains the maximum number of oxygen atoms?
(a) 1 g of O
(b) 1 g of O_{2}
(c) 1 g of O_{3}
(d) all have the same number of atoms
6. Which of the following compounds has the same empirical formula as that of glucose?
(a $\mathrm{CH}_{3} \mathrm{CHO}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}$
(c) $\mathrm{CH}_{3} \mathrm{OH}$
(d) $\mathrm{C}_{2} \mathrm{H}_{6}$
7. On analysis, a certain compound was found to contain iodine and oxygen in the ratio of 254:80. The formula of the compound is:
(At mass $\mathrm{I}=127, \mathrm{O}=16$)
(a) IO
(b) $\mathrm{I}_{2} \mathrm{O}$
(c) $\mathrm{I}_{5} \mathrm{O}_{2}$
(d) $\mathrm{I}_{2} \mathrm{O}_{5}$
8. 10 mol of Zn mixed with 10 mol of HCl . Calculate the number of moles of H_{2} produced
(a) 5 mol (b) 10 mol
(c) 20 mol
(d) 2.5 mol

Questions 9-10 are Assertion Reason type questions

a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
c. If Assertion is correct and Reason is wrong.
d. If Assertion is wrong and Reason is correct.
9. Assertion (A): Number of moles of H_{2} in 0.224 L of hydrogen is 0.01 mole.

Reason(R): 22.4 L of H_{2} at STP contains 6.023×10^{23} moles.
10. Assertion (A): The empirical mass of ethene is half of its molecular mass.

Reason (R) The empirical formula represents the simplest whole number ratio of various atoms present in a compound.

2 Marks questions

11. Calculate the number of molecules and number of atoms present in 1.2 g of ozone.
12. Prove that sum of all mole fractions of a solution is unity
13. Write empirical formula of the following:
$\mathrm{CO}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KCl}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$
14. An organic compound contains 144 g of carbon and 12 g of hydrogen. If molar mass of this compound is $78 \mathrm{gmol}^{-1}$, calculate:
I. Empirical formula
II. Molecular formula
15. How many moles of ethane are required to produce $66 \mathrm{~g} \mathrm{CO}_{2}$ after combustion?
16. A solution is prepared by dissolving 150 g of NaCl in 900 g of water. Calculate the mole fraction of each component.
17. How many moles of N_{2} are required to produce 85 g of NH_{3} ? Calculate its mass.

3 Marks Questions

18. What do you mean by limiting reagent?

400 g of N_{2} and 150 g of H_{2} are mixed together to form NH_{3}. Identify the limiting reagent and calculate the amount of NH_{3} produced.
19. Explain the following:
a. Mole fraction
b. Molarity
c. Molality
20. The density of the 2 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution.
21. Zinc and hydrochloric acid react according to the reaction:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

If 0.30 mol Zn are added to hydrochloric acid containing 0.52 mol of HCl , how many moles of H_{2} are produced?
22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is $194.19 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

Case study-based Questions (4 marks)

23.The identity of a substance is defined not only by the types of atoms or ions it contains but by the quantity of each type of atom or ion. The experimental approach required the introduction of a new unit for the number of substances, the mole, which remains indispensable in modern chemical science. A mole is an amount unit similar to familiar units like pair, dozen, gross, etc. It provides a specific measure of the number of atoms or molecules in a bulk sample of matter. A mole is defined as the amount of substance containing the same number of discrete entities (atoms, molecules, ions, etc.) as the number of atoms in a sample of pure 12 C weighing exactly 12 g .. The number of entities composing a mole has been experimentally determined to be 6.02214179×1023. The molar mass of an element (or compound) is the mass in grams of 1 mole of that substance, a property expressed in units of grams per mole ($\mathrm{g} / \mathrm{mol}$).
(a) The mass of oxygen gas which occupies 5.6 liters at STP could be (1 mol of gas occupier 22.4 litres of gas at STP)
(b) What is the mass of one molecule of yellow phosphorus? (Atomic mass of phosphorus $=31 \mathrm{u}$)
(c) How many Oxygen atoms are present in 6.025 g of Barium phosphate $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (atomic mass of $\mathrm{Ba}=$ 137.5 U, P=31 U, O=16u)

5 Marks Questions

24. Calcium carbonate reacts with aqueous HCl to produce CaCl_{2} and CO_{2}. According to the reaction given Below

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What mass of calcium chloride will be formed when 0.19 mole of HCl reacts with 1000 grams of Calcium carbonate Name the limiting reagent.
25. Calculate the molality and molarity of $93 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (mass/volume). The density of the solution is 1.84 gram per ml

Answers

1.	c
2.	c
3.	d
4.	c
5.	a
6.	b
7.	d
8.	a
9.	c
10	a
11	number of molec^{2} 1 molecule of O_{3} contain $\mathrm{O}_{3}(\mathrm{~N})=3$ atoms No Of atoms $=.45 \times 10^{23}$

12	Mole fraction of A in solution $\left(x_{A}\right)=\frac{n_{A}}{n_{A}+n_{B}}$ Mole fraction of B in solution $(x a)=\frac{n_{B}}{n_{A}+n_{B}}$ So, $x_{A}+x_{B}=\frac{n_{A}+n_{B}}{n_{A}+n_{B}}=1$		
13	$\begin{aligned} & \mathrm{CO}-\mathrm{CO} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \mathrm{KCl}-\mathrm{KCl} \\ & \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{O}_{3} \end{aligned}$		
	Element Mass Moles	Ratio	Simplest ratio
	C 144 12	1	1
	H 12 12	1	1
	Empirical formula $=\mathrm{CH}$ Empirical formula mass $=13$ $\mathrm{n}=78 / 13=6$ Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$		
15	$\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ No: of moles of $\mathrm{CO}_{2}=66 / 44=1.5$ moles Ans: 0.75 moles of ethane		
16	$\begin{aligned} & \mathrm{n}_{\mathrm{NaCl}}=150 / 58.5=2.56 \\ & \mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=900 / 18=50 \\ & \chi_{\mathrm{NaCl}}=2.56 / 2.56+50=0.0487 \\ & \chi_{\text {н2O }}=50 / 52.56=0.951 \end{aligned}$		
17	$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ No: of moles of $\mathrm{NH}_{3}=85 / 17=5$ moles Therefore no: of moles of $\mathrm{N}_{2}=2.5$ moles		

18	. Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ No: of moles of $\mathrm{N}_{2}=400 / 28=14.28 \mathrm{~mol}$ No: of moles of $\mathrm{H}_{2}=150 / 2=75 \mathrm{~mol}$ No: of moles of H_{2} required for 14.28 moles of $\mathrm{N}_{2}=42.84 \mathrm{~mol}$ Therefore, H_{2} is excess reagent i.e. N_{2} is limiting reagent. Therefore no: of moles of $\mathrm{NH}_{3}=28.56 \mathrm{~mol}$ Mass of $\mathrm{NH}_{3}=28.56 \times 17=485.52 \mathrm{~g}$
19	. a. Mole fraction: It is the ratio of number of moles of a particular component to the total number of moles of the solution. Mole fraction of A $\begin{aligned} & =\frac{\text { No. of moles of } \mathrm{A}}{\text { No.of moles of solutions }} \\ & =\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ Mole fraction of B $\begin{aligned} & =\frac{\text { No. of moles of } \mathrm{B}}{\text { No. of moles of solutions }} \\ & =\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ b. Molarity: It is defined as the number of moles of the solute in 1 litre of the solution. $\text { Molarity }(\mathrm{M})=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}$ c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent. $\text { Molality }(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in kg }}$
20	. Molarity $=2 \mathrm{M}$ Assume volume of solution $=1 \mathrm{~L}$ Therefore, No of moles of $\mathrm{NaCl}=2 \mathrm{~mol}$ Mass of $\mathrm{NaCl}=2 \times 58.5=117 \mathrm{~g}$ Mass of 1 L of solution $=1.25 \mathrm{gml}^{-1} \times 1000 \mathrm{~g}=1250 \mathrm{~g}$.

	$\begin{aligned} & \text { (Since density }=1.25 \mathrm{gml}^{-1} \text { and density }=\text { mass / volume) } \\ & \text { Mass of water }=1250 \mathrm{~g} \mathrm{-117g} \\ & \quad=1133 \mathrm{~g} \\ & \begin{aligned} \text { Molality } & =\text { No: of moles of solute/ Mass of solvent }(\mathrm{kg}) \\ & =2 / 1.133 \\ & =1.765 \mathrm{molkg}^{-1} \end{aligned} \end{aligned}$
21	HCl is limiting reagent; H_{2} formed $=0.36 \mathrm{~mol}$
22	Moles of $\mathrm{C}=49.48 / 12=4.12 \mathrm{~mol}$ Moles of $\mathrm{H}=5.19 / 1 \quad=5.19 \mathrm{~mol}$ Moles of $\mathrm{O}=16.48 / 16=1.03 \mathrm{~mol}$ Moles of $\mathrm{N}=28.85 / 14=2.06 \mathrm{~mol}$ Empirical formula $=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$ Molecular formula $=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
23	(a) 5.6 litres of O_{2} gas $=5.6 / 22.4$ moles of $\mathrm{O}_{2}=1 / 4 \mathrm{~mole}=8 \mathrm{~g}$ of O_{2} (b) Mass in grams $=31 / 6.022 \times 10^{23}=5.14 \times 10^{-23} \mathrm{~g}$ (c) No of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}=6.025 / 602.5=10^{-2}$ 1 molecule of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ contains 8 O atoms Hence No of Oxygen atoms in 10^{-2} moles $=10^{-2} \times 6.022 \quad 10-23 \times 8=4.82 \times 10^{22}$ atoms
24	HCl is the limiting reagent 10.54 grams of calcium chloride is formed
25	Molarity $=9.49 \mathrm{M}$, molality $=10.43 \mathrm{~m}$

